eurac research

Evaluation of PV system data collected in COST Action Pearl PV Database –

Analysis of PR, Yield & PLR of a large fleet of PV systems

ARLP

Sascha Lindig Eurac Research

Overview PV systems

	1.2	
2	Country	# of plan
	Belgium	5418
	France	1355
	UK	872
5.	Italy	323
NEL ,	Malaysia	140
	Guadeloupe	69
	Luxembourg	68
	Netherlands	68
	Martinique	48
	Reunion	47 _{iantic}
	Spain	19
	Greece	10
	French Guiana	4
anto E San	Germany	3
	Switzerland	3
ristad	Australia	2
ENEZ	Poland	2
7	Austria	1
2	Portugal AMAPA	1
	a yes	There

eurac research

FFARE

09/06/21

Initial Data Quality Grading

Letter Grade	Outliers [%]	Missing percentage [%]	Longest gap [days]
А	Below 10	Below 10	Below 15
В	10 to 20	10 to 25	15 to 30
С	20 to 30	25 to 40	30 to 90
D	Above 30	Above 40	Above 90

Pass/fail criteria	Time series > 24 months => PASS
--------------------	---------------------------------

[1] S. Lindig, et al., "International collaboration framework for the calculation of performance loss rates: Data quality, benchmarks, and trends (towards a uniform methodology)," *Progress in Photovoltaics: Research and Applications*, vol. 29, no. 6, pp. 573–602, 2021.

Initial Data Quality Grading

Letter Grade	Outliers	Missing percentage	Longest gap
Α	8,367	5,773	7,655
В	0	2,216	280
С	0	164	291
D	0	214	141
D	Above 30	Above 40	Above 90
Pass/fail criteria		P: 4.323	F: 4.044

[1] S. Lindig, et al., "International collaboration framework for the calculation of performance loss rates: Data quality, benchmarks, and trends (towards a uniform methodology)," *Progress in Photovoltaics: Research and Applications*, vol. 29, no. 6, pp. 573–602, 2021.

Energy Yield

$$\overline{yield} = 954.9rac{kWh}{kWp}$$
 per year

$$\widetilde{yield} = 961.5 \frac{kWh}{kWp}$$
 per year

Energy Yield

$$\overline{yield} = 954.9 \frac{kWh}{kWp}$$
 per year

$$\widetilde{yield} = 961.5 \frac{kWh}{kWp}$$
 per year

Performance Ratio

0. Exploratory data analysis for data quality & grading

[1] S. Lindig, et al., "International collaboration framework for the calculation of performance loss rates: Data quality, benchmarks, and trends (towards a uniform methodology)," *Progress in Photovoltaics: Research and Applications*, vol. 29, no. 6, pp. 573–602, 2021.

 T_{amb} – ambient temperature

PR – Performance Ratio

[2] Copernicus Climate Change Service (C3S) ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service CDS 2017.

[3] B. Meyers, et al, "Signal Processing on PV Time-Series Data: Robust Degradation Analysis Without Physical Models," IEEE Journal of Photovoltaics, 2019.

[4] RdTools, "Version 2.0.5." [Online]. Available: https://github.com/NREL/rdtools

[5] D. Jordan, et al, "Robust PV Degradation Methodology and Application," *IEEE Journal of Photovoltaics*, 2017.

[6] R. B. Cleveland et al., "STL: A Seasonal-Trend Decomposition Procedure Based on LOESS," Journal of Official Statistics, 1990.

eurac research 09/06/21 S. Lindig, SOPHIA Workshop

[3] B. Meyers, et al, "Signal Processing on PV Time-Series Data: Robust Degradation Analysis Without Physical Models," *IEEE Journal of Photovoltaics*, 2019.

eurac research 09/06/21 S. Lindig, SOPHIA Workshop

[3] B. Meyers, et al, "Signal Processing on PV Time-Series Data: Robust Degradation Analysis Without Physical Models," *IEEE Journal of Photovoltaics*, 2019.

eurac research 09/06/21 S. Lindig, SOPHIA Workshop

eurac research

S. Lindig, SOPHIA Workshop

	Filter			
Statistical method	G_{POA} [W/m ²] T_{mod} [°C]		Power	Performance Ratio
SCSF	Strict clear-sky filter			
YoY	200-1200	-50 - 110	P > 0	
STL	100-1200		(0.01 - 1.05)* P_{nom}	$\pm 2\sigma$ around daily mean PR

	SCSF	YoY–ERA5	STL-ERA5
All systems	8,367		
FINAL	661	361	366

Minimum 3 years of data -4%/a < PLR < 1%/a

[7] D. C. Jordan, et al, "Compendium of photovoltaic degradation rates," *Progress in Photovoltaics Research and Application*, vol. 24, no. 7, pp. 978-980, 2016.
[8] K. Kiefer, et al, "Degradation in PV Power Plants: Theory and Practice," in *36th EU PVSEC, Marseille*, 2019.

PLR is an important parameter to assess the health status of a PV system

- Calculating PLR values is not straightforward
 - Many variables have to be considered
 - The length and quality of the PV system time series is the most important characteristic of PV performance analyses

09/06/21

eurac research

Thank you for your attention

www.eurac.edu/ Sascha.Lindig@eurac.edu

Special thanks to: J. Ascencio-Vásquez, J. Leloux, D. Moser & A. Reinders